- independent for any nonzero vectors **u** in U and **w** from the set $\{1, 2, ..., n\}$ to \mathbb{R} . in W.
- c. If B and D are bases of U and W, and if $U \cap W =$ $\{\mathbf{0}\}$, show that $B \cup D = \{\mathbf{v} \mid \mathbf{v} \text{ is in } B \text{ or } D\}$ is independent.

Exercise 6.3.34 If U and W are vector spaces, let $V = \{ (\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \text{ in } U \text{ and } \mathbf{w} \text{ in } W \}.$

- a. Show that V is a vector space if $(\mathbf{u}, \mathbf{w}) +$ $({\bf u}_1, {\bf w}_1) = ({\bf u} + {\bf u}_1, {\bf w} + {\bf w}_1)$ and $a({\bf u}, {\bf w}) =$ (*a***u**, *a***w**).
- b. If dim U = m and dim W = n, show that $\dim V = m + n.$
- c. If V_1, \ldots, V_m are vector spaces, let

$$V = V_1 \times \cdots \times V_m$$

= {(**v**₁, ..., **v**_m) | **v**_i \in V_i for each i}

denote the space of *n*-tuples from the V_i with componentwise operations (see Exercise 6.1.17). If dim $V_i = n_i$ for each *i*, show that dim $V = n_1 + i$ $\cdots + n_m$.

b. Show that $U \cap W = \{0\}$ if and only if $\{u, w\}$ is **Exercise 6.3.35** Let \mathbf{D}_n denote the set of all functions f

- a. Show that \mathbf{D}_n is a vector space with pointwise addition and scalar multiplication.
- b. Show that $\{S_1, S_2, \ldots, S_n\}$ is a basis of \mathbf{D}_n where, for each k = 1, 2, ..., n, the function S_k is defined by $S_k(k) = 1$, whereas $S_k(j) = 0$ if $j \neq k$.

Exercise 6.3.36 A polynomial p(x) is called even if p(-x) = p(x) and odd if p(-x) = -p(x). Let E_n and O_n denote the sets of even and odd polynomials in \mathbf{P}_n .

- a. Show that E_n is a subspace of \mathbf{P}_n and find dim E_n .
- b. Show that O_n is a subspace of \mathbf{P}_n and find dim O_n .

Exercise 6.3.37 Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be independent in a vector space V, and let A be an $n \times n$ matrix. Define **u** $_1, ...,$ **u** $_n$ by

$$\left[\begin{array}{c} \mathbf{u}_1\\ \vdots\\ \mathbf{u}_n \end{array}\right] = A \left[\begin{array}{c} \mathbf{v}_1\\ \vdots\\ \mathbf{v}_n \end{array}\right]$$

(See Exercise 6.1.18.) Show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is independent if and only if A is invertible.

6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence no guarantee that one can speak at all of the dimension of V. However, Theorem 6.4.1 will show that any space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the following basic lemma, of interest in itself, that gives a way to enlarge a given independent set of vectors.

Lemma 6.4.1: Independent Lemma

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be an independent set of vectors in a vector space V. If $\mathbf{u} \in V$ but⁵ $\mathbf{u} \notin \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, then $\{\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is also independent.

<u>Proof.</u> Let $t\mathbf{u} + t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$; we must show that all the coefficients are zero. First, t = 0because, otherwise, $\mathbf{u} = -\frac{t_1}{t}\mathbf{v}_1 - \frac{t_2}{t}\mathbf{v}_2 - \cdots - \frac{t_k}{t}\mathbf{v}_k$ is in span $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$, contrary to our assumption.

⁵If X is a set, we write $a \in X$ to indicate that a is an element of the set X. If a is not an element of X, we write $a \notin X$.

Hence t = 0. But then $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ so the rest of the t_i are zero by the independence of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$. This is what we wanted.

Note that the converse of Lemma 6.4.1 is also true: if $\{\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is independent, then **u** is not in span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

As an illustration, suppose that $\{v_1, v_2\}$ is independent in \mathbb{R}^3 . Then v_1 and v_2 are not parallel, so span $\{v_1, v_2\}$ is a plane through the origin (shaded in the diagram). By Lemma 6.4.1, **u** is not in this plane if and only if $\{u, v_1, v_2\}$ is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called **finite dimensional** if it is spanned by a finite set of vectors. Otherwise, V is called **infinite dimensional**.

Thus the zero vector space $\{0\}$ is finite dimensional because $\{0\}$ is a spanning set.

Lemma 6.4.2

Let V be a finite dimensional vector space. If U is any subspace of V, then any independent subset of U can be enlarged to a finite basis of U.

Proof. Suppose that *I* is an independent subset of *U*. If span I = U then *I* is already a basis of *U*. If span $I \neq U$, choose $\mathbf{u}_1 \in U$ such that $\mathbf{u}_1 \notin \text{span } I$. Hence the set $I \cup {\mathbf{u}_1}$ is independent by Lemma 6.4.1. If span $(I \cup {\mathbf{u}_1}) = U$ we are done; otherwise choose $\mathbf{u}_2 \in U$ such that $\mathbf{u}_2 \notin \text{span } (I \cup {\mathbf{u}_1})$. Hence $I \cup {\mathbf{u}_1, \mathbf{u}_2}$ is independent, and the process continues. We claim that a basis of *U* will be reached eventually. Indeed, if no basis of *U* is ever reached, the process creates arbitrarily large independent sets in *V*. But this is impossible by the fundamental theorem because *V* is finite dimensional and so is spanned by a finite set of vectors.

Theorem 6.4.1

Let V be a finite dimensional vector space spanned by m vectors.

- 1. *V* has a finite basis, and dim $V \le m$.
- 2. Every independent set of vectors in *V* can be enlarged to a basis of *V* by adding vectors from any fixed basis of *V*.
- 3. If U is a subspace of V, then
 - a. U is finite dimensional and dim $U \leq \dim V$.
 - b. If dim $U = \dim V$ then U = V.

Proof.

- 1. If $V = \{0\}$, then V has an empty basis and dim $V = 0 \le m$. Otherwise, let $\mathbf{v} \ne \mathbf{0}$ be a vector in V. Then $\{\mathbf{v}\}$ is independent, so (1) follows from Lemma 6.4.2 with U = V.
- 2. We refine the proof of Lemma 6.4.2. Fix a basis *B* of *V* and let *I* be an independent subset of *V*. If span I = V then *I* is already a basis of *V*. If span $I \neq V$, then *B* is not contained in *I* (because *B* spans *V*). Hence choose $\mathbf{b}_1 \in B$ such that $\mathbf{b}_1 \notin \text{span } I$. Hence the set $I \cup \{\mathbf{b}_1\}$ is independent by Lemma 6.4.1. If span $(I \cup \{\mathbf{b}_1\}) = V$ we are done; otherwise a similar argument shows that $(I \cup \{\mathbf{b}_1, \mathbf{b}_2\})$ is independent for some $\mathbf{b}_2 \in B$. Continue this process. As in the proof of Lemma 6.4.2, a basis of *V* will be reached eventually.
- 3. a. This is clear if $U = \{0\}$. Otherwise, let $\mathbf{u} \neq \mathbf{0}$ in U. Then $\{\mathbf{u}\}$ can be enlarged to a finite basis B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent in V, so dim $U \leq \dim V$ by the fundamental theorem.
 - b. This is clear if $U = \{0\}$ because V has a basis; otherwise, it follows from (2).

 \square

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis (possibly empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set $D = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}$ to a basis of \mathbf{M}_{22} . **Solution.** The standard basis of \mathbf{M}_{22} is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$, so including one of these in D will produce a basis by Theorem 6.4.1. In fact including *any* of these matrices in D produces an independent set (verify), and hence a basis by Theorem 6.4.4. Of course these vectors are not the only possibilities, for example, including $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ works as well.

Example 6.4.2

Find a basis of **P**₃ containing the independent set $\{1 + x, 1 + x^2\}$.

<u>Solution</u>. The standard basis of \mathbf{P}_3 is $\{1, x, x^2, x^3\}$, so including two of these vectors will do. If we use 1 and x^3 , the result is $\{1, 1+x, 1+x^2, x^3\}$. This is independent because the polynomials have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of course, including $\{1, x\}$ or $\{1, x^2\}$ would *not* work!

Example 6.4.3

Show that the space **P** of all polynomials is infinite dimensional.

<u>Solution</u>. For each $n \ge 1$, **P** has a subspace \mathbf{P}_n of dimension n + 1. Suppose **P** is finite dimensional, say dim $\mathbf{P} = m$. Then dim $\mathbf{P}_n \le \dim \mathbf{P}$ by Theorem 6.4.1, that is $n + 1 \le m$. This is impossible since *n* is arbitrary, so **P** must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_k$ are independent columns in \mathbb{R}^n , show that they are the first *k* columns in some invertible $n \times n$ matrix.

Solution. By Theorem 6.4.1, expand $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_k\}$ to a basis $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_k, \mathbf{c}_{k+1}, \dots, \mathbf{c}_n\}$ of \mathbb{R}^n . Then the matrix $A = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_k & \mathbf{c}_{k+1} & \dots & \mathbf{c}_n \end{bmatrix}$ with this basis as its columns is an $n \times n$ matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2

Let U and W be subspaces of the finite dimensional space V.

1. If $U \subseteq W$, then dim $U \leq \dim W$.

2. If $U \subseteq W$ and dim $U = \dim W$, then U = W.

Proof. Since W is finite dimensional, (1) follows by taking V = W in part (3) of Theorem 6.4.1. Now assume dim $U = \dim W = n$, and let B be a basis of U. Then B is an independent set in W. If $U \neq W$, then span $B \neq W$, so B can be extended to an independent set of n + 1 vectors in W by Lemma 6.4.1. This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by dim W = n vectors. Hence U = W, proving (2).

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2.13 for \mathbb{R}^2 and \mathbb{R}^3 ; here is another example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in \mathbf{P}_n that have a as a root:

$$W = \{ p(x) \mid p(x) \in \mathbf{P}_n \text{ and } p(a) = 0 \}$$

Show that $\{(x-a), (x-a)^2, \dots, (x-a)^n\}$ is a basis of *W*.

Solution. Observe first that (x-a), $(x-a)^2$, ..., $(x-a)^n$ are members of *W*, and that they are independent because they have distinct degrees (Example 6.3.4). Write

$$U = \text{span} \{ (x-a), (x-a)^2, \dots, (x-a)^n \}$$

Then we have $U \subseteq W \subseteq \mathbf{P}_n$, dim U = n, and dim $\mathbf{P}_n = n + 1$. Hence $n \leq \dim W \leq n + 1$ by Theorem 6.4.2. Since dim W is an integer, we must have dim W = n or dim W = n + 1. But then W = U or $W = \mathbf{P}_n$, again by Theorem 6.4.2. Because $W \neq \mathbf{P}_n$, it follows that W = U, as required. A set of vectors is called **dependent** if it is *not* independent, that is if some nontrivial linear combination vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set $D = {v_1, v_2, ..., v_k}$ of vectors in a vector space V is dependent if and only if some vector in *D* is a linear combination of the others.

<u>Proof.</u> Let \mathbf{v}_2 (say) be a linear combination of the rest: $\mathbf{v}_2 = s_1 \mathbf{v}_1 + s_3 \mathbf{v}_3 + \cdots + s_k \mathbf{v}_k$. Then

$$s_1\mathbf{v}_1 + (-1)\mathbf{v}_2 + s_3\mathbf{v}_3 + \dots + s_k\mathbf{v}_k = \mathbf{0}$$

is a nontrivial linear combination that vanishes, so *D* is dependent. Conversely, if *D* is dependent, let $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ where some coefficient is nonzero. If (say) $t_2 \neq 0$, then $\mathbf{v}_2 = -\frac{t_1}{t_2}\mathbf{v}_1 - \frac{t_3}{t_2}\mathbf{v}_3 - \cdots - \frac{t_k}{t_2}\mathbf{v}_k$ is a linear combination of the others.

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows that spanning sets can be cut down to a basis.

Theorem 6.4.3

Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by deleting vectors) to a basis of V.

Proof. Since *V* is finite dimensional, it has a finite spanning set *S*. Among all spanning sets contained in *S*, choose S_0 containing the smallest number of vectors. It suffices to show that S_0 is independent (then S_0 is a basis, proving the theorem). Suppose, on the contrary, that S_0 is not independent. Then, by Lemma 6.4.3, some vector $\mathbf{u} \in S_0$ is a linear combination of the set $S_1 = S_0 \setminus {\mathbf{u}}$ of vectors in S_0 other than \mathbf{u} . It follows that span $S_0 = \text{span } S_1$, that is, $V = \text{span } S_1$. But S_1 has fewer elements than S_0 so this contradicts the choice of S_0 . Hence S_0 is independent after all.

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for the case $V = \mathbb{R}^n$.

Example 6.4.6

Find a basis of **P**₃ in the spanning set $S = \{1, x + x^2, 2x - 3x^2, 1 + 3x - 2x^2, x^3\}$.

<u>Solution</u>. Since dim $\mathbf{P}_3 = 4$, we must eliminate one polynomial from *S*. It cannot be x^3 because the span of the rest of *S* is contained in \mathbf{P}_2 . But eliminating $1 + 3x - 2x^2$ does leave a basis (verify). Note that $1 + 3x - 2x^2$ is the sum of the first three polynomials in *S*.

Theorems 6.4.1 and 6.4.3 have other useful consequences.

Theorem 6.4.4

Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in V. Then S is independent if and only if S spans V.

Proof. Assume first that *S* is independent. By Theorem 6.4.1, *S* is contained in a basis *B* of *V*. Hence |S| = n = |B| so, since $S \subseteq B$, it follows that S = B. In particular *S* spans *V*.

Conversely, assume that *S* spans *V*, so *S* contains a basis *B* by Theorem 6.4.3. Again |S| = n = |B| so, since $S \supseteq B$, it follows that S = B. Hence *S* is independent.

One of independence or spanning is often easier to establish than the other when showing that a set of vectors is a basis. For example if $V = \mathbb{R}^n$ it is easy to check whether a subset *S* of \mathbb{R}^n is orthogonal (hence independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set $S = \{p_0(x), p_1(x), \dots, p_n(x)\}$ of polynomials in \mathbf{P}_n . If deg $p_k(x) = k$ for each k, show that S is a basis of \mathbf{P}_n .

<u>Solution.</u> The set *S* is independent—the degrees are distinct—see Example 6.3.4. Hence *S* is a basis of \mathbf{P}_n by Theorem 6.4.4 because dim $\mathbf{P}_n = n + 1$.

Example 6.4.8

Let *V* denote the space of all symmetric 2×2 matrices. Find a basis of *V* consisting of invertible matrices.

Solution. We know that dim V = 3 (Example 6.3.11), so what is needed is a set of three invertible, symmetric matrices that (using Theorem 6.4.4) is either independent or spans V. The set

 $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$ is independent (verify) and so is a basis of the required type.

Example 6.4.9

Let A be any $n \times n$ matrix. Show that there exist $n^2 + 1$ scalars $a_0, a_1, a_2, \ldots, a_{n^2}$ not all zero, such that

$$a_0I + a_1A + a_2A^2 + \dots + a_{n^2}A^{n^2} = 0$$

where *I* denotes the $n \times n$ identity matrix.

<u>Solution.</u> The space \mathbf{M}_{nn} of all $n \times n$ matrices has dimension n^2 by Example 6.3.7. Hence the $n^2 + 1$ matrices $I, A, A^2, \ldots, A^{n^2}$ cannot be independent by Theorem 6.4.4, so a nontrivial linear combination vanishes. This is the desired conclusion.

The result in Example 6.4.9 can be written as f(A) = 0 where $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n^2}x^{n^2}$. In other words, A satisfies a nonzero polynomial f(x) of degree at most n^2 . In fact we know that A satisfies

a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see Theorem 8.7.10), but the brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

If U and W are subspaces of a vector space V, there are two related subspaces that are of interest, their sum U + W and their intersection $U \cap W$, defined by

$$U + W = \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in U \text{ and } \mathbf{w} \in W\}$$
$$U \cap W = \{\mathbf{v} \in V \mid \mathbf{v} \in U \text{ and } \mathbf{v} \in W\}$$

It is routine to verify that these are indeed subspaces of V, that $U \cap W$ is contained in both U and W, and that U + W contains both U and W. We conclude this section with a useful fact about the dimensions of these spaces. The proof is a good illustration of how the theorems in this section are used.

Theorem 6.4.5

Suppose that U and W are finite dimensional subspaces of a vector space V. Then U + W is finite dimensional and

$$\dim (U+W) = \dim U + \dim W - \dim (U \cap W).$$

Proof. Since $U \cap W \subseteq U$, it has a finite basis, say $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$. Extend it to a basis $\{\mathbf{x}_1, \ldots, \mathbf{x}_d, \mathbf{u}_1, \ldots, \mathbf{u}_m\}$ of *U* by Theorem 6.4.1. Similarly extend $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ to a basis $\{\mathbf{x}_1, \ldots, \mathbf{x}_d, \mathbf{w}_1, \ldots, \mathbf{w}_p\}$ of *W*. Then

$$U + W = \text{span} \{ \mathbf{x}_1, ..., \mathbf{x}_d, \mathbf{u}_1, ..., \mathbf{u}_m, \mathbf{w}_1, ..., \mathbf{w}_p \}$$

as the reader can verify, so U + W is finite dimensional. For the rest, it suffices to show that $\{\mathbf{x}_1, \ldots, \mathbf{x}_d, \mathbf{u}_1, \ldots, \mathbf{u}_m, \mathbf{w}_1, \ldots, \mathbf{w}_p\}$ is independent (verify). Suppose that

$$r_1\mathbf{x}_1 + \dots + r_d\mathbf{x}_d + s_1\mathbf{u}_1 + \dots + s_m\mathbf{u}_m + t_1\mathbf{w}_1 + \dots + t_p\mathbf{w}_p = \mathbf{0}$$
(6.1)

where the r_i , s_j , and t_k are scalars. Then

$$r_1\mathbf{x}_1 + \dots + r_d\mathbf{x}_d + s_1\mathbf{u}_1 + \dots + s_m\mathbf{u}_m = -(t_1\mathbf{w}_1 + \dots + t_p\mathbf{w}_p)$$

is in *U* (left side) and also in *W* (right side), and so is in $U \cap W$. Hence $(t_1\mathbf{w}_1 + \dots + t_p\mathbf{w}_p)$ is a linear combination of $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$, so $t_1 = \dots = t_p = 0$, because $\{\mathbf{x}_1, \dots, \mathbf{x}_d, \mathbf{w}_1, \dots, \mathbf{w}_p\}$ is independent. Similarly, $s_1 = \dots = s_m = 0$, so (6.1) becomes $r_1\mathbf{x}_1 + \dots + r_d\mathbf{x}_d = \mathbf{0}$. It follows that $r_1 = \dots = r_d = 0$, as required.

Theorem 6.4.5 is particularly interesting if $U \cap W = \{0\}$. Then there are *no* vectors \mathbf{x}_i in the above proof, and the argument shows that if $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ and $\{\mathbf{w}_1, \ldots, \mathbf{w}_p\}$ are bases of U and W respectively, then $\{\mathbf{u}_1, \ldots, \mathbf{u}_m, \mathbf{w}_1, \ldots, \mathbf{w}_p\}$ is a basis of U + W. In this case U + W is said to be a **direct sum** (written $U \oplus W$); we return to this in Chapter 9.

Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that includes the vector \mathbf{v} .

a.
$$V = \mathbb{R}^3$$
, $\mathbf{v} = (1, -1, 1)$
b. $V = \mathbb{R}^3$, $\mathbf{v} = (0, 1, 1)$
c. $V = \mathbf{M}_{22}$, $\mathbf{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
d. $V = \mathbf{P}_2$, $\mathbf{v} = x^2 - x + 1$

Exercise 6.4.2 In each case, find a basis for *V* among the given vectors.

a. $V = \mathbb{R}^3$, {(1, 1, -1), (2, 0, 1), (-1, 1, -2), (1, 2, 1)} b. $V = \mathbf{P}_2$, { $x^2 + 3$, x + 2, $x^2 - 2x - 1$, $x^2 + x$ }

Exercise 6.4.3 In each case, find a basis of *V* containing **v** and **w**.

- a. $V = \mathbb{R}^4$, $\mathbf{v} = (1, -1, 1, -1)$, $\mathbf{w} = (0, 1, 0, 1)$ b. $V = \mathbb{R}^4$, $\mathbf{v} = (0, 0, 1, 1)$, $\mathbf{w} = (1, 1, 1, 1)$ c. $V = \mathbf{M}_{22}$, $\mathbf{v} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- d. $V = \mathbf{P}_3$, $\mathbf{v} = x^2 + 1$, $\mathbf{w} = x^2 + x$

Exercise 6.4.4

- a. If z is not a real number, show that $\{z, z^2\}$ is a basis of the real vector space \mathbb{C} of all complex numbers.
- b. If z is neither real nor pure imaginary, show that $\{z, \overline{z}\}$ is a basis of \mathbb{C} .

Exercise 6.4.5 In each case use Theorem 6.4.4 to decide if S is a basis of V.

a.
$$V = \mathbf{M}_{22};$$

 $S = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

b.
$$V = \mathbf{P}_3$$
; $S = \{2x^2, 1+x, 3, 1+x+x^2+x^3\}$

Exercise 6.4.6

- a. Find a basis of M_{22} consisting of matrices with the property that $A^2 = A$.
- b. Find a basis of \mathbf{P}_3 consisting of polynomials whose coefficients sum to 4. What if they sum to 0?

Exercise 6.4.7 If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis of *V*, determine which of the following are bases.

a. $\{u + v, u + w, v + w\}$ b. $\{2u + v + 3w, 3u + v - w, u - 4w\}$ c. $\{u, u + v + w\}$ d. $\{u, u + w, u - w, v + w\}$

Exercise 6.4.8

- a. Can two vectors span \mathbb{R}^3 ? Can they be linearly independent? Explain.
- b. Can four vectors span \mathbb{R}^3 ? Can they be linearly independent? Explain.

Exercise 6.4.9 Show that any nonzero vector in a finite dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that det A = 0 if and only if some row is a linear combination of the others.

Exercise 6.4.11 Let D, I, and X denote finite, nonempty sets of vectors in a vector space V. Assume that D is dependent and I is independent. In each case answer yes or no, and defend your answer.

- a. If $X \supseteq D$, must X be dependent?
- b. If $X \subseteq D$, must X be dependent?
- c. If $X \supseteq I$, must X be independent?
- d. If $X \subseteq I$, must X be independent?

Exercise 6.4.12 If *U* and *W* are subspaces of *V* and dim U = 2, show that either $U \subseteq W$ or dim $(U \cap W) \le 1$.

Exercise 6.4.13 Let *A* be a nonzero 2×2 matrix and write $U = \{X \text{ in } \mathbf{M}_{22} | XA = AX\}$. Show that dim $U \ge 2$. [*Hint*: *I* and *A* are in *U*.]

Exercise 6.4.14 If $U \subseteq \mathbb{R}^2$ is a subspace, show that $U = \{\mathbf{0}\}, U = \mathbb{R}^2$, or U is a line through the origin.

Exercise 6.4.15 Given \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , ..., \mathbf{v}_k , and \mathbf{v} , let $U = \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ and $W = \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{v}\}$. Show that either dim W = dim U or dim W = 1 + dim U.

Exercise 6.4.16 Suppose U is a subspace of \mathbf{P}_1 , $U \neq \{0\}$, and $U \neq \mathbf{P}_1$. Show that either $U = \mathbb{R}$ or $U = \mathbb{R}(a+x)$ for some a in \mathbb{R} .

Exercise 6.4.17 Let U be a subspace of V and assume dim V = 4 and dim U = 2. Does every basis of V result from adding (two) vectors to some basis of U? Defend your answer.

Exercise 6.4.18 Let U and W be subspaces of a vector space V.

- a. If dim V = 3, dim $U = \dim W = 2$, and $U \neq W$, show that dim $(U \cap W) = 1$.
- b. Interpret (a.) geometrically if $V = \mathbb{R}^3$.

Exercise 6.4.19 Let $U \subseteq W$ be subspaces of V with dim U = k and dim W = m, where k < m. If k < l < m, show that a subspace X exists where $U \subseteq X \subseteq W$ and dim X = l.

Exercise 6.4.20 Let $B = {\mathbf{v}_1, ..., \mathbf{v}_n}$ be a *maximal* independent set in a vector space *V*. That is, no set of more than *n* vectors *S* is independent. Show that *B* is a basis of *V*.

Exercise 6.4.21 Let $B = {\mathbf{v}_1, ..., \mathbf{v}_n}$ be a *minimal* spanning set for a vector space *V*. That is, *V* cannot be spanned by fewer than *n* vectors. Show that *B* is a basis of *V*.

Exercise 6.4.22

a. Let p(x) and q(x) lie in \mathbf{P}_1 and suppose that $p(1) \neq 0, q(2) \neq 0$, and p(2) = 0 = q(1). Show that $\{p(x), q(x)\}$ is a basis of \mathbf{P}_1 . [*Hint*: If rp(x) + sq(x) = 0, evaluate at x = 1, x = 2.]

b. Let $B = \{p_0(x), p_1(x), \dots, p_n(x)\}$ be a set of polynomials in \mathbf{P}_n . Assume that there exist numbers a_0, a_1, \dots, a_n such that $p_i(a_i) \neq 0$ for each *i* but $p_i(a_j) = 0$ if *i* is different from *j*. Show that *B* is a basis of \mathbf{P}_n .

Exercise 6.4.23 Let *V* be the set of all infinite sequences $(a_0, a_1, a_2, ...)$ of real numbers. Define addition and scalar multiplication by

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots)$$

and

$$r(a_0, a_1, \ldots) = (ra_0, ra_1, \ldots)$$

- a. Show that *V* is a vector space.
- b. Show that *V* is not finite dimensional.
- c. [For those with some calculus.] Show that the set of convergent sequences (that is, $\lim_{n\to\infty} a_n$ exists) is a subspace, also of infinite dimension.

Exercise 6.4.24 Let *A* be an $n \times n$ matrix of rank *r*. If $U = \{X \text{ in } \mathbf{M}_{nn} \mid AX = 0\}$, show that dim U = n(n-r). [*Hint*: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V.

- a. Show that U + W is a subspace of V containing both U and W.
- b. Show that span $\{u, w\} = \mathbb{R}u + \mathbb{R}w$ for any vectors u and w.
- c. Show that

span {
$$\mathbf{u}_1, ..., \mathbf{u}_m, \mathbf{w}_1, ..., \mathbf{w}_n$$
}
= span { $\mathbf{u}_1, ..., \mathbf{u}_m$ } + span { $\mathbf{w}_1, ..., \mathbf{w}_n$ }

for any vectors \mathbf{u}_i in U and \mathbf{w}_i in W.

Exercise 6.4.26 If *A* and *B* are $m \times n$ matrices, show that rank $(A + B) \leq \text{rank } A + \text{rank } B$. [*Hint*: If *U* and *V* are the column spaces of *A* and *B*, respectively, show that the column space of A + B is contained in U + V and that dim $(U + V) \leq \dim U + \dim V$. (See Theorem 6.4.5.)]

6.5 An Application to Polynomials

The vector space of all polynomials of degree at most *n* is denoted \mathbf{P}_n , and it was established in Section 6.3 that \mathbf{P}_n has dimension n + 1; in fact, $\{1, x, x^2, ..., x^n\}$ is a basis. More generally, *any* n + 1 polynomials of distinct degrees form a basis, by Theorem 6.4.4 (they are independent by Example 6.3.4). This proves

Theorem 6.5.1

Let $p_0(x)$, $p_1(x)$, $p_2(x)$, ..., $p_n(x)$ be polynomials in \mathbf{P}_n of degrees 0, 1, 2, ..., *n*, respectively. Then $\{p_0(x), \ldots, p_n(x)\}$ is a basis of \mathbf{P}_n .

An immediate consequence is that $\{1, (x-a), (x-a)^2, ..., (x-a)^n\}$ is a basis of \mathbf{P}_n for any number *a*. Hence we have the following:

Corollary 6.5.1

If *a* is any number, every polynomial f(x) of degree at most *n* has an expansion in powers of (x-a):

$$f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n$$
(6.2)

If f(x) is evaluated at x = a, then equation (6.2) becomes

 $f(x) = a_0 + a_1(a-a) + \dots + a_n(a-a)^n = a_0$

Hence $a_0 = f(a)$, and equation (6.2) can be written f(x) = f(a) + (x-a)g(x), where g(x) is a polynomial of degree n-1 (this assumes that $n \ge 1$). If it happens that f(a) = 0, then it is clear that f(x) has the form f(x) = (x-a)g(x). Conversely, every such polynomial certainly satisfies f(a) = 0, and we obtain:

Corollary 6.5.2

Let f(x) be a polynomial of degree $n \ge 1$ and let *a* be any number. Then: **Remainder Theorem**

1. f(x) = f(a) + (x - a)g(x) for some polynomial g(x) of degree n - 1.

Factor Theorem

2. f(a) = 0 if and only if f(x) = (x - a)g(x) for some polynomial g(x).

The polynomial g(x) can be computed easily by using "long division" to divide f(x) by (x-a)—see Appendix D.

All the coefficients in the expansion (6.2) of f(x) in powers of (x-a) can be determined in terms of the derivatives of f(x).⁶ These will be familiar to students of calculus. Let $f^{(n)}(x)$ denote the *n*th derivative

⁶The discussion of Taylor's theorem can be omitted with no loss of continuity.