b. Show that $U \cap W=\{\mathbf{0}\}$ if and only if $\{\mathbf{u}, \mathbf{w}\}$ is independent for any nonzero vectors \mathbf{u} in U and \mathbf{w} in W.
c. If B and D are bases of U and W, and if $U \cap W=$ $\{\mathbf{0}\}$, show that $B \cup D=\{\mathbf{v} \mid \mathbf{v}$ is in B or $D\}$ is independent.

Exercise 6.3.34 If U and W are vector spaces, let $V=\{(\mathbf{u}, \mathbf{w}) \mid \mathbf{u}$ in U and \mathbf{w} in $W\}$.
a. Show that V is a vector space if $(\mathbf{u}, \mathbf{w})+$ $\left(\mathbf{u}_{1}, \mathbf{w}_{1}\right)=\left(\mathbf{u}+\mathbf{u}_{1}, \mathbf{w}+\mathbf{w}_{1}\right)$ and $a(\mathbf{u}, \mathbf{w})=$ ($a \mathbf{u}, a \mathbf{w}$).
b. If $\operatorname{dim} U=m$ and $\operatorname{dim} W=n$, show that $\operatorname{dim} V=m+n$.
c. If V_{1}, \ldots, V_{m} are vector spaces, let

$$
\begin{aligned}
V & =V_{1} \times \cdots \times V_{m} \\
& =\left\{\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right) \mid \mathbf{v}_{i} \in V_{i} \text { for each } i\right\}
\end{aligned}
$$

denote the space of n-tuples from the V_{i} with componentwise operations (see Exercise 6.1.17). If $\operatorname{dim} V_{i}=n_{i}$ for each i, show that $\operatorname{dim} V=n_{1}+$ $\cdots+n_{m}$.

Exercise 6.3.35 Let \mathbf{D}_{n} denote the set of all functions f from the set $\{1,2, \ldots, n\}$ to \mathbb{R}.
a. Show that \mathbf{D}_{n} is a vector space with pointwise addition and scalar multiplication.
b. Show that $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is a basis of \mathbf{D}_{n} where, for each $k=1,2, \ldots, n$, the function S_{k} is defined by $S_{k}(k)=1$, whereas $S_{k}(j)=0$ if $j \neq k$.

Exercise 6.3.36 A polynomial $p(x)$ is called even if $p(-x)=p(x)$ and odd if $p(-x)=-p(x)$. Let E_{n} and O_{n} denote the sets of even and odd polynomials in \mathbf{P}_{n}.
a. Show that E_{n} is a subspace of \mathbf{P}_{n} and find $\operatorname{dim} E_{n}$.
b. Show that O_{n} is a subspace of \mathbf{P}_{n} and find $\operatorname{dim} O_{n}$.

Exercise 6.3.37 Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be independent in a vector space V, and let A be an $n \times n$ matrix. Define $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ by

$$
\left[\begin{array}{c}
\mathbf{u}_{1} \\
\vdots \\
\mathbf{u}_{n}
\end{array}\right]=A\left[\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{n}
\end{array}\right]
$$

(See Exercise 6.1.18.) Show that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is independent if and only if A is invertible.

6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence no guarantee that one can speak at all of the dimension of V. However, Theorem 6.4.1 will show that any space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the following basic lemma, of interest in itself, that gives a way to enlarge a given independent set of vectors.

Lemma 6.4.1: Independent Lemma

Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be an independent set of vectors in a vector space V. If $\boldsymbol{u} \in V$ but ${ }^{5}$ $\boldsymbol{u} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, then $\left\{\boldsymbol{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is also independent.

Proof. Let $t \mathbf{u}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}=\mathbf{0}$; we must show that all the coefficients are zero. First, $t=0$ because, otherwise, $\mathbf{u}=-\frac{t_{1}}{t} \mathbf{v}_{1}-\frac{t_{2}}{t} \mathbf{v}_{2}-\cdots-\frac{t_{k}}{t} \mathbf{v}_{k}$ is in span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, contrary to our assumption.

[^0]Hence $t=0$. But then $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}=\mathbf{0}$ so the rest of the t_{i} are zero by the independence of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$. This is what we wanted.

Note that the converse of Lemma 6.4.1 is also true: if $\left\{\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent, then \mathbf{u} is not in $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.

As an illustration, suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is independent in \mathbb{R}^{3}. Then \mathbf{v}_{1} and \mathbf{v}_{2} are not parallel, so span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a plane through the origin (shaded in the diagram). By Lemma 6.4.1, \mathbf{u} is not in this plane if and only if $\left\{\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called finite dimensional if it is spanned by a finite set of vectors. Otherwise, V is called infinite dimensional.

Thus the zero vector space $\{\mathbf{0}\}$ is finite dimensional because $\{\mathbf{0}\}$ is a spanning set.

Lemma 6.4.2

Let V be a finite dimensional vector space. If U is any subspace of V, then any independent subset of U can be enlarged to a finite basis of U.

Proof. Suppose that I is an independent subset of U. If span $I=U$ then I is already a basis of U. If span $I \neq U$, choose $\mathbf{u}_{1} \in U$ such that $\mathbf{u}_{1} \notin$ span I. Hence the set $I \cup\left\{\mathbf{u}_{1}\right\}$ is independent by Lemma 6.4.1. If $\operatorname{span}\left(I \cup\left\{\mathbf{u}_{1}\right\}\right)=U$ we are done; otherwise choose $\mathbf{u}_{2} \in U$ such that $\mathbf{u}_{2} \notin \operatorname{span}\left(I \cup\left\{\mathbf{u}_{1}\right\}\right)$. Hence $I \cup\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is independent, and the process continues. We claim that a basis of U will be reached eventually. Indeed, if no basis of U is ever reached, the process creates arbitrarily large independent sets in V. But this is impossible by the fundamental theorem because V is finite dimensional and so is spanned by a finite set of vectors.

Theorem 6.4.1

Let V be a finite dimensional vector space spanned by m vectors.

1. V has a finite basis, and $\operatorname{dim} V \leq m$.
2. Every independent set of vectors in V can be enlarged to a basis of V by adding vectors from any fixed basis of V.
3. If U is a subspace of V, then
a. U is finite dimensional and $\operatorname{dim} U \leq \operatorname{dim} V$.
b. If $\operatorname{dim} U=\operatorname{dim} V$ then $U=V$.

Proof.

1. If $V=\{\mathbf{0}\}$, then V has an empty basis and $\operatorname{dim} V=0 \leq m$. Otherwise, let $\mathbf{v} \neq \mathbf{0}$ be a vector in V. Then $\{\mathbf{v}\}$ is independent, so (1) follows from Lemma 6.4.2 with $U=V$.
2. We refine the proof of Lemma 6.4.2. Fix a basis B of V and let I be an independent subset of V. If span $I=V$ then I is already a basis of V. If span $I \neq V$, then B is not contained in I (because B spans $V)$. Hence choose $\mathbf{b}_{1} \in B$ such that $\mathbf{b}_{1} \notin$ span I. Hence the set $I \cup\left\{\mathbf{b}_{1}\right\}$ is independent by Lemma 6.4.1. If $\operatorname{span}\left(I \cup\left\{\mathbf{b}_{1}\right\}\right)=V$ we are done; otherwise a similar argument shows that $(I \cup$ $\left.\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}\right)$ is independent for some $\mathbf{b}_{2} \in B$. Continue this process. As in the proof of Lemma 6.4.2, a basis of V will be reached eventually.
3. a. This is clear if $U=\{\mathbf{0}\}$. Otherwise, let $\mathbf{u} \neq \mathbf{0}$ in U. Then $\{\mathbf{u}\}$ can be enlarged to a finite basis B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent in V, so $\operatorname{dim} U \leq \operatorname{dim} V$ by the fundamental theorem.
b. This is clear if $U=\{\boldsymbol{0}\}$ because V has a basis; otherwise, it follows from (2).

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis (possibly empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set $D=\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\right\}$ to a basis of \mathbf{M}_{22}.
Solution. The standard basis of \mathbf{M}_{22} is $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$, so
including one of these in D will produce a basis by Theorem 6.4.1. In fact including any of these matrices in D produces an independent set (verify), and hence a basis by Theorem 6.4.4. Of course these vectors are not the only possibilities, for example, including $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ works as well.

Example 6.4.2

Find a basis of \mathbf{P}_{3} containing the independent set $\left\{1+x, 1+x^{2}\right\}$.
Solution. The standard basis of \mathbf{P}_{3} is $\left\{1, x, x^{2}, x^{3}\right\}$, so including two of these vectors will do. If we use 1 and x^{3}, the result is $\left\{1,1+x, 1+x^{2}, x^{3}\right\}$. This is independent because the polynomials have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of course, including $\{1, x\}$ or $\left\{1, x^{2}\right\}$ would not work!

Example 6.4.3

Show that the space \mathbf{P} of all polynomials is infinite dimensional.

Solution. For each $n \geq 1, \mathbf{P}$ has a subspace \mathbf{P}_{n} of dimension $n+1$. Suppose \mathbf{P} is finite dimensional, say $\operatorname{dim} \mathbf{P}=m$. Then $\operatorname{dim} \mathbf{P}_{n} \leq \operatorname{dim} \mathbf{P}$ by Theorem 6.4.1, that is $n+1 \leq m$. This is impossible since n is arbitrary, so \mathbf{P} must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{k}$ are independent columns in \mathbb{R}^{n}, show that they are the first k columns in some invertible $n \times n$ matrix.

Solution. By Theorem 6.4.1, expand $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{k}\right\}$ to a basis $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{k}, \mathbf{c}_{k+1}, \ldots, \mathbf{c}_{n}\right\}$ of \mathbb{R}^{n}. Then the matrix $A=\left[\begin{array}{lllllll}\mathbf{c}_{1} & \mathbf{c}_{2} & \ldots & \mathbf{c}_{k} & \mathbf{c}_{k+1} & \ldots & \mathbf{c}_{n}\end{array}\right]$ with this basis as its columns is an $n \times n$ matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2

Let U and W be subspaces of the finite dimensional space V.

1. If $U \subseteq W$, then $\operatorname{dim} U \leq \operatorname{dim} W$.
2. If $U \subseteq W$ and $\operatorname{dim} U=\operatorname{dim} W$, then $U=W$.

Proof. Since W is finite dimensional, (1) follows by taking $V=W$ in part (3) of Theorem 6.4.1. Now assume $\operatorname{dim} U=\operatorname{dim} W=n$, and let B be a basis of U. Then B is an independent set in W. If $U \neq W$, then span $B \neq W$, so B can be extended to an independent set of $n+1$ vectors in W by Lemma 6.4.1. This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by $\operatorname{dim} W=n$ vectors. Hence $U=W$, proving (2).

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2 .13 for \mathbb{R}^{2} and \mathbb{R}^{3}; here is another example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in \mathbf{P}_{n} that have a as a root:

$$
W=\left\{p(x) \mid p(x) \in \mathbf{P}_{n} \text { and } p(a)=0\right\}
$$

Show that $\left\{(x-a),(x-a)^{2}, \ldots,(x-a)^{n}\right\}$ is a basis of W.
Solution. Observe first that $(x-a),(x-a)^{2}, \ldots,(x-a)^{n}$ are members of W, and that they are independent because they have distinct degrees (Example 6.3.4). Write

$$
U=\operatorname{span}\left\{(x-a),(x-a)^{2}, \ldots,(x-a)^{n}\right\}
$$

Then we have $U \subseteq W \subseteq \mathbf{P}_{n}$, $\operatorname{dim} U=n$, and $\operatorname{dim} \mathbf{P}_{n}=n+1$. Hence $n \leq \operatorname{dim} W \leq n+1$ by Theorem 6.4.2. Since $\operatorname{dim} W$ is an integer, we must have $\operatorname{dim} W=n$ or $\operatorname{dim} W=n+1$. But then $W=U$ or $W=\mathbf{P}_{n}$, again by Theorem 6.4.2. Because $W \neq \mathbf{P}_{n}$, it follows that $W=U$, as required.

A set of vectors is called dependent if it is not independent, that is if some nontrivial linear combination vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set $D=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ of vectors in a vector space V is dependent if and only if some vector in D is a linear combination of the others.

$$
s_{1} \mathbf{v}_{1}+(-1) \mathbf{v}_{2}+s_{3} \mathbf{v}_{3}+\cdots+s_{k} \mathbf{v}_{k}=\mathbf{0}
$$

is a nontrivial linear combination that vanishes, so D is dependent. Conversely, if D is dependent, let $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}=\mathbf{0}$ where some coefficient is nonzero. If (say) $t_{2} \neq 0$, then $\mathbf{v}_{2}=-\frac{t_{1}}{t_{2}} \mathbf{v}_{1}-\frac{t_{3}}{t_{2}} \mathbf{v}_{3}-$ $\cdots-\frac{t_{k}}{t_{2}} \mathbf{v}_{k}$ is a linear combination of the others.

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows that spanning sets can be cut down to a basis.

Theorem 6.4.3
 Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by deleting vectors) to a basis of V.

Proof. Since V is finite dimensional, it has a finite spanning set S. Among all spanning sets contained in S, choose S_{0} containing the smallest number of vectors. It suffices to show that S_{0} is independent (then S_{0} is a basis, proving the theorem). Suppose, on the contrary, that S_{0} is not independent. Then, by Lemma 6.4.3, some vector $\mathbf{u} \in S_{0}$ is a linear combination of the set $S_{1}=S_{0} \backslash\{\mathbf{u}\}$ of vectors in S_{0} other than \mathbf{u}. It follows that span $S_{0}=\operatorname{span} S_{1}$, that is, $V=\operatorname{span} S_{1}$. But S_{1} has fewer elements than S_{0} so this contradicts the choice of S_{0}. Hence S_{0} is independent after all.

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for the case $V=\mathbb{R}^{n}$.

Example 6.4.6

Find a basis of \mathbf{P}_{3} in the spanning set $S=\left\{1, x+x^{2}, 2 x-3 x^{2}, 1+3 x-2 x^{2}, x^{3}\right\}$.
Solution. Since $\operatorname{dim} \mathbf{P}_{3}=4$, we must eliminate one polynomial from S. It cannot be x^{3} because the span of the rest of S is contained in \mathbf{P}_{2}. But eliminating $1+3 x-2 x^{2}$ does leave a basis (verify). Note that $1+3 x-2 x^{2}$ is the sum of the first three polynomials in S.

Theorems 6.4.1 and 6.4.3 have other useful consequences.

Theorem 6.4.4

Let V be a vector space with $\operatorname{dim} V=n$, and suppose S is a set of exactly n vectors in V. Then S is independent if and only if S spans V.

Proof. Assume first that S is independent. By Theorem 6.4.1, S is contained in a basis B of V. Hence $|S|=n=|B|$ so, since $S \subseteq B$, it follows that $S=B$. In particular S spans V.

Conversely, assume that S spans V, so S contains a basis B by Theorem 6.4.3. Again $|S|=n=|B|$ so, since $S \supseteq B$, it follows that $S=B$. Hence S is independent.

One of independence or spanning is often easier to establish than the other when showing that a set of vectors is a basis. For example if $V=\mathbb{R}^{n}$ it is easy to check whether a subset S of \mathbb{R}^{n} is orthogonal (hence independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set $S=\left\{p_{0}(x), p_{1}(x), \ldots, p_{n}(x)\right\}$ of polynomials in \mathbf{P}_{n}. If deg $p_{k}(x)=k$ for each k, show that S is a basis of \mathbf{P}_{n}.

Solution. The set S is independent—the degrees are distinct—see Example 6.3.4. Hence S is a basis of \mathbf{P}_{n} by Theorem 6.4.4 because $\operatorname{dim} \mathbf{P}_{n}=n+1$.

Example 6.4.8

Let V denote the space of all symmetric 2×2 matrices. Find a basis of V consisting of invertible matrices.

Solution. We know that $\operatorname{dim} V=3$ (Example 6.3.11), so what is needed is a set of three invertible, symmetric matrices that (using Theorem 6.4.4) is either independent or spans V. The set $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$ is independent (verify) and so is a basis of the required type.

Example 6.4.9

Let A be any $n \times n$ matrix. Show that there exist $n^{2}+1$ scalars $a_{0}, a_{1}, a_{2}, \ldots, a_{n^{2}}$ not all zero, such that

$$
a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{n^{2}} A^{n^{2}}=0
$$

where I denotes the $n \times n$ identity matrix.
Solution. The space $\mathbf{M}_{n n}$ of all $n \times n$ matrices has dimension n^{2} by Example 6.3.7. Hence the $n^{2}+1$ matrices $I, A, A^{2}, \ldots, A^{n^{2}}$ cannot be independent by Theorem 6.4.4, so a nontrivial linear combination vanishes. This is the desired conclusion.

The result in Example 6.4 .9 can be written as $f(A)=0$ where $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n^{2}} x^{n^{2}}$. In other words, A satisfies a nonzero polynomial $f(x)$ of degree at most n^{2}. In fact we know that A satisfies
a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem-see Theorem 8.7.10), but the brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

If U and W are subspaces of a vector space V, there are two related subspaces that are of interest, their sum $U+W$ and their intersection $U \cap W$, defined by

$$
\begin{aligned}
U+W & =\{\mathbf{u}+\mathbf{w} \mid \mathbf{u} \in U \text { and } \mathbf{w} \in W\} \\
U \cap W & =\{\mathbf{v} \in V \mid \mathbf{v} \in U \text { and } \mathbf{v} \in W\}
\end{aligned}
$$

It is routine to verify that these are indeed subspaces of V, that $U \cap W$ is contained in both U and W, and that $U+W$ contains both U and W. We conclude this section with a useful fact about the dimensions of these spaces. The proof is a good illustration of how the theorems in this section are used.

Theorem 6.4.5

Suppose that U and W are finite dimensional subspaces of a vector space V. Then $U+W$ is finite dimensional and

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

Proof. Since $U \cap W \subseteq U$, it has a finite basis, say $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$. Extend it to a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ of U by Theorem 6.4.1. Similarly extend $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ to a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ of W. Then

$$
U+W=\operatorname{span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}
$$

as the reader can verify, so $U+W$ is finite dimensional. For the rest, it suffices to show that $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ is independent (verify). Suppose that

$$
\begin{equation*}
r_{1} \mathbf{x}_{1}+\cdots+r_{d} \mathbf{x}_{d}+s_{1} \mathbf{u}_{1}+\cdots+s_{m} \mathbf{u}_{m}+t_{1} \mathbf{w}_{1}+\cdots+t_{p} \mathbf{w}_{p}=\mathbf{0} \tag{6.1}
\end{equation*}
$$

where the r_{i}, s_{j}, and t_{k} are scalars. Then

$$
r_{1} \mathbf{x}_{1}+\cdots+r_{d} \mathbf{x}_{d}+s_{1} \mathbf{u}_{1}+\cdots+s_{m} \mathbf{u}_{m}=-\left(t_{1} \mathbf{w}_{1}+\cdots+t_{p} \mathbf{w}_{p}\right)
$$

is in U (left side) and also in W (right side), and so is in $U \cap W$. Hence $\left(t_{1} \mathbf{w}_{1}+\cdots+t_{p} \mathbf{w}_{p}\right)$ is a linear combination of $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, so $t_{1}=\cdots=t_{p}=0$, because $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ is independent. Similarly, $s_{1}=\cdots=s_{m}=0$, so (6.1) becomes $r_{1} \mathbf{x}_{1}+\cdots+r_{d} \mathbf{x}_{d}=\mathbf{0}$. It follows that $r_{1}=\cdots=r_{d}=0$, as required.

Theorem 6.4.5 is particularly interesting if $U \cap W=\{\mathbf{0}\}$. Then there are no vectors \mathbf{x}_{i} in the above proof, and the argument shows that if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ are bases of U and W respectively, then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ is a basis of $U+W$. In this case $U+W$ is said to be a direct sum (written $U \oplus W)$; we return to this in Chapter 9 .

Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that includes the vector \mathbf{v}.
a. $V=\mathbb{R}^{3}, \mathbf{v}=(1,-1,1)$
b. $V=\mathbb{R}^{3}, \mathbf{v}=(0,1,1)$
c. $V=\mathbf{M}_{22}, \mathbf{v}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
d. $V=\mathbf{P}_{2}, \mathbf{v}=x^{2}-x+1$

Exercise 6.4.2 In each case, find a basis for V among the given vectors.
a. $V=\mathbb{R}^{3}$,
$\{(1,1,-1),(2,0,1),(-1,1,-2),(1,2,1)\}$
b. $V=\mathbf{P}_{2},\left\{x^{2}+3, x+2, x^{2}-2 x-1, x^{2}+x\right\}$

Exercise 6.4.3 In each case, find a basis of V containing \mathbf{v} and \mathbf{w}.
a. $V=\mathbb{R}^{4}, \mathbf{v}=(1,-1,1,-1), \mathbf{w}=(0,1,0,1)$
b. $V=\mathbb{R}^{4}, \mathbf{v}=(0,0,1,1), \mathbf{w}=(1,1,1,1)$
c. $V=\mathbf{M}_{22}, \mathbf{v}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathbf{w}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
d. $V=\mathbf{P}_{3}, \mathbf{v}=x^{2}+1, \mathbf{w}=x^{2}+x$

Exercise 6.4.4

a. If z is not a real number, show that $\left\{z, z^{2}\right\}$ is a basis of the real vector space \mathbb{C} of all complex numbers.
b. If z is neither real nor pure imaginary, show that $\{z, \bar{z}\}$ is a basis of \mathbb{C}.

Exercise 6.4.5 In each case use Theorem 6.4.4 to decide if S is a basis of V.

$$
\begin{aligned}
& \text { a. } V=\mathbf{M}_{22} ; \\
& S=\left\{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

b. $V=\mathbf{P}_{3} ; S=\left\{2 x^{2}, 1+x, 3,1+x+x^{2}+x^{3}\right\}$

Exercise 6.4.6

a. Find a basis of \mathbf{M}_{22} consisting of matrices with the property that $A^{2}=A$.
b. Find a basis of \mathbf{P}_{3} consisting of polynomials whose coefficients sum to 4 . What if they sum to 0 ?

Exercise 6.4.7 If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis of V, determine which of the following are bases.
a. $\{\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{w}, \mathbf{v}+\mathbf{w}\}$
b. $\{2 \mathbf{u}+\mathbf{v}+3 \mathbf{w}, 3 \mathbf{u}+\mathbf{v}-\mathbf{w}, \mathbf{u}-4 \mathbf{w}\}$
c. $\{\mathbf{u}, \mathbf{u}+\mathbf{v}+\mathbf{w}\}$
d. $\{\mathbf{u}, \mathbf{u}+\mathbf{w}, \mathbf{u}-\mathbf{w}, \mathbf{v}+\mathbf{w}\}$

Exercise 6.4.8

a. Can two vectors span \mathbb{R}^{3} ? Can they be linearly independent? Explain.
b. Can four vectors span \mathbb{R}^{3} ? Can they be linearly independent? Explain.

Exercise 6.4.9 Show that any nonzero vector in a finite dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that $\operatorname{det} A=0$ if and only if some row is a linear combination of the others.

Exercise 6.4.11 Let D, I, and X denote finite, nonempty sets of vectors in a vector space V. Assume that D is dependent and I is independent. In each case answer yes or no, and defend your answer.
a. If $X \supseteq D$, must X be dependent?
b. If $X \subseteq D$, must X be dependent?
c. If $X \supseteq I$, must X be independent?
d. If $X \subseteq I$, must X be independent?

Exercise 6.4.12 If U and W are subspaces of V and $\operatorname{dim} U=2$, show that either $U \subseteq W$ or $\operatorname{dim}(U \cap W) \leq 1$.

Exercise 6.4.13 Let A be a nonzero 2×2 matrix and write $U=\left\{X\right.$ in $\left.\mathbf{M}_{22} \mid X A=A X\right\}$. Show that $\operatorname{dim} U \geq 2$. [Hint: I and A are in U.]
Exercise 6.4.14 If $U \subseteq \mathbb{R}^{2}$ is a subspace, show that $U=\{\boldsymbol{0}\}, U=\mathbb{R}^{2}$, or U is a line through the origin.
Exercise 6.4.15 Given $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{k}$, and \mathbf{v}, let $U=$ $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ and $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{v}\right\}$. Show that either $\operatorname{dim} W=\operatorname{dim} U$ or $\operatorname{dim} W=1+$ $\operatorname{dim} U$.

Exercise 6.4.16 Suppose U is a subspace of \mathbf{P}_{1}, $U \neq\{0\}$, and $U \neq \mathbf{P}_{1}$. Show that either $U=\mathbb{R}$ or $U=\mathbb{R}(a+x)$ for some a in \mathbb{R}.

Exercise 6.4.17 Let U be a subspace of V and assume $\operatorname{dim} V=4$ and $\operatorname{dim} U=2$. Does every basis of V result from adding (two) vectors to some basis of U ? Defend your answer.
Exercise 6.4.18 Let U and W be subspaces of a vector space V.
a. If $\operatorname{dim} V=3, \operatorname{dim} U=\operatorname{dim} W=2$, and $U \neq W$, show that $\operatorname{dim}(U \cap W)=1$.
b. Interpret (a.) geometrically if $V=\mathbb{R}^{3}$.

Exercise 6.4.19 Let $U \subseteq W$ be subspaces of V with $\operatorname{dim} U=k$ and $\operatorname{dim} W=m$, where $k<m$. If $k<l<m$, show that a subspace X exists where $U \subseteq X \subseteq W$ and $\operatorname{dim} X=l$.

Exercise 6.4.20 Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a maximal independent set in a vector space V. That is, no set of more than n vectors S is independent. Show that B is a basis of V.
Exercise 6.4.21 Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a minimal spanning set for a vector space V. That is, V cannot be spanned by fewer than n vectors. Show that B is a basis of V.

Exercise 6.4.22

a. Let $p(x)$ and $q(x)$ lie in \mathbf{P}_{1} and suppose that $p(1) \neq 0, q(2) \neq 0$, and $p(2)=0=q(1)$. Show that $\{p(x), q(x)\}$ is a basis of \mathbf{P}_{1}. [Hint: If $r p(x)+s q(x)=0$, evaluate at $x=1, x=2$.]
b. Let $B=\left\{p_{0}(x), p_{1}(x), \ldots, p_{n}(x)\right\}$ be a set of polynomials in \mathbf{P}_{n}. Assume that there exist numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that $p_{i}\left(a_{i}\right) \neq 0$ for each i but $p_{i}\left(a_{j}\right)=0$ if i is different from j. Show that B is a basis of \mathbf{P}_{n}.

Exercise 6.4.23 Let V be the set of all infinite sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ of real numbers. Define addition and scalar multiplication by

$$
\left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots\right)
$$

and

$$
r\left(a_{0}, a_{1}, \ldots\right)=\left(r a_{0}, r a_{1}, \ldots\right)
$$

a. Show that V is a vector space.
b. Show that V is not finite dimensional.
c. [For those with some calculus.] Show that the set of convergent sequences (that is, $\lim _{n \rightarrow \infty} a_{n}$ exists) is a subspace, also of infinite dimension.

Exercise 6.4.24 Let A be an $n \times n$ matrix of rank r. If $U=\left\{X\right.$ in $\left.\mathbf{M}_{n n} \mid A X=0\right\}$, show that $\operatorname{dim} U=n(n-r)$. [Hint: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V.
a. Show that $U+W$ is a subspace of V containing both U and W.
b. Show that span $\{\mathbf{u}, \mathbf{w}\}=\mathbb{R} \mathbf{u}+\mathbb{R} \mathbf{w}$ for any vectors \mathbf{u} and \mathbf{w}.
c. Show that

$$
\begin{aligned}
& \operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\} \\
& =\operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}+\operatorname{span}\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}
\end{aligned}
$$

for any vectors \mathbf{u}_{i} in U and \mathbf{w}_{j} in W.

Exercise 6.4.26 If A and B are $m \times n$ matrices, show that $\operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B$. [Hint: If U and V are the column spaces of A and B, respectively, show that the column space of $A+B$ is contained in $U+V$ and that $\operatorname{dim}(U+V) \leq \operatorname{dim} U+\operatorname{dim} V$. (See Theorem 6.4.5.)]

6.5 An Application to Polynomials

The vector space of all polynomials of degree at most n is denoted \mathbf{P}_{n}, and it was established in Section 6.3 that \mathbf{P}_{n} has dimension $n+1$; in fact, $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis. More generally, any $n+1$ polynomials of distinct degrees form a basis, by Theorem 6.4.4 (they are independent by Example 6.3.4). This proves

Theorem 6.5.1

Let $p_{0}(x), p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ be polynomials in \boldsymbol{P}_{n} of degrees $0,1,2, \ldots, n$, respectively. Then $\left\{p_{0}(x), \ldots, p_{n}(x)\right\}$ is a basis of \boldsymbol{P}_{n}.

An immediate consequence is that $\left\{1,(x-a),(x-a)^{2}, \ldots,(x-a)^{n}\right\}$ is a basis of \mathbf{P}_{n} for any number a. Hence we have the following:

Corollary 6.5.1

If a is any number, every polynomial $f(x)$ of degree at most n has an expansion in powers of $(x-a)$:

$$
\begin{equation*}
f(x)=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots+a_{n}(x-a)^{n} \tag{6.2}
\end{equation*}
$$

If $f(x)$ is evaluated at $x=a$, then equation (6.2) becomes

$$
f(x)=a_{0}+a_{1}(a-a)+\cdots+a_{n}(a-a)^{n}=a_{0}
$$

Hence $a_{0}=f(a)$, and equation (6.2) can be written $f(x)=f(a)+(x-a) g(x)$, where $g(x)$ is a polynomial of degree $n-1$ (this assumes that $n \geq 1$). If it happens that $f(a)=0$, then it is clear that $f(x)$ has the form $f(x)=(x-a) g(x)$. Conversely, every such polynomial certainly satisfies $f(a)=0$, and we obtain:

Corollary 6.5.2

Let $f(x)$ be a polynomial of degree $n \geq 1$ and let a be any number. Then:

Remainder Theorem

1. $f(x)=f(a)+(x-a) g(x)$ for some polynomial $g(x)$ of degree $n-1$.

Factor Theorem

2. $f(a)=0$ if and only if $f(x)=(x-a) g(x)$ for some polynomial $g(x)$.

The polynomial $g(x)$ can be computed easily by using "long division" to divide $f(x)$ by $(x-a)$-see Appendix D.

All the coefficients in the expansion (6.2) of $f(x)$ in powers of $(x-a)$ can be determined in terms of the derivatives of $f(x) .{ }^{6}$ These will be familiar to students of calculus. Let $f^{(n)}(x)$ denote the nth derivative

[^1]
[^0]: ${ }^{5}$ If X is a set, we write $a \in X$ to indicate that a is an element of the set X. If a is not an element of X, we write $a \notin X$.

[^1]: ${ }^{6}$ The discussion of Taylor's theorem can be omitted with no loss of continuity.

